Generative Low-shot Network Expansion
ثبت نشده
چکیده
Conventional deep learning classifiers are static in the sense that they are trained on a predefined set of classes and learning to classify a novel class typically requires re-training. In this work, we address the problem of Low-Shot network-expansion learning. We introduce a learning framework which enables expanding a pre-trained (base) deep network to classify novel classes when the number of examples for the novel classes is particularly small. We present a simple yet powerful distillation method where the base network is augmented with additional weights to classify the novel classes, while keeping the weights of the base network unchanged. We term this learning hard distillation, since we preserve the response of the network on the old classes to be equal in both the base and the expanded network. We show that since only a small number of weights needs to be trained, the hard distillation excels for low-shot training scenarios. Furthermore, hard distillation avoids detriment to classification performance on the base classes. Finally, we show that low-shot network expansion can be done with a very small memory footprint by using a compact generative model of the base classes training data with only a negligible degradation relative to learning with the full training set.
منابع مشابه
Generative Adversarial Residual Pairwise Networks for One Shot Learning
Deep neural networks achieve unprecedented performance levels over many tasks and scale well with large quantities of data, but performance in the low-data regime and tasks like one shot learning still lags behind. While recent work suggests many hypotheses from better optimization to more complicated network structures, in this work we hypothesize that having a learnable and more expressive si...
متن کاملData Augmentation Generative Adversarial Networks
Effective training of neural networks requires much data. In the low-data regime, parameters are underdetermined, and learnt networks generalise poorly. Data Augmentation (Krizhevsky et al., 2012) alleviates this by using existing data more effectively. However standard data augmentation produces only limited plausible alternative data. Given there is potential to generate a much broader set of...
متن کاملInverting The Generator Of A Generative Adversarial Network
Generative adversarial networks (GANs) learn to synthesise new samples from a high-dimensional distribution by passing samples drawn from a latent space through a generative network. When the high-dimensional distribution describes images of a particular data set, the network should learn to generate visually similar image samples for latent variables that are close to each other in the latent ...
متن کاملModelling of Conventional and Severe Shot Peening Influence on Properties of High Carbon Steel via Artificial Neural Network
Shot peening (SP), as one of the severe plastic deformation (SPD) methods is employed for surface modification of the engineering components by improving the metallurgical and mechanical properties. Furthermore artificial neural network (ANN) has been widely used in different science and engineering problems for predicting and optimizing in the last decade. In the present study, effects of conv...
متن کاملLearning feed-forward one-shot learners
One-shot learning is usually tackled by using generative models or discriminative embeddings. Discriminative methods based on deep learning, which are very effective in other learning scenarios, are ill-suited for one-shot learning as they need large amounts of training data. In this paper, we propose a method to learn the parameters of a deep model in one shot. We construct the learner as a se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017